
security research

Adobe Reader X
BMP/RLE heap corruption

Adobe Reader X is a powerful software solution developed by Adobe Systems to view,
create, manipulate, print and manage files in Portable Document Format (PDF). Since
version 10 it includes the Protected Mode, a sandbox technology similar to the one in
Google Chrome which improves the overall security of the product.
Adobe Reader X fails to validate the input when parsing an embedded BMP RLE encoded
image. Arbitrary code execution in the context of the sandboxed process is proved possible
after a malicious bmp image triggers a heap overflow.

Dec 2012
Felipe Andres Manzano

feliam@binamuse.com

CONTENTS CONTENTS

Contents

1 Target summary 2

2 Vulnerability brief information 2

3 Common Vulnerability Scoring System 2

4 Vulnerability Workaround 3

5 Vulnerability Details 3
5.1 PDF Forms . 3
5.2 XFA, The XML Forms Architecture . 3
5.3 BMP - Run length encoding . 5
5.4 Bug pseudocode . 5

6 Exploitation detail 7
6.1 Read the struct . 7
6.2 Write the struct . 8
6.3 Controlling the flow . 9

Adobe Reader X BMP Heap corruption 1

3 COMMON VULNERABILITY SCORING SYSTEM

1 Target summary

Title: Adobe Reader X BMP/RLE heap corruption

Product: Adobe Reader X

Version: 10.x

Product Homepage: adobe.com

Binary affected: AcroForm.api

Binary Version: 10.1.4.38

Binary MD5: 8e0fc0c6f206b84e265cc3076c4b9841

2 Vulnerability brief information

Vulnerability Class Memory Corruption

Affected Versions 10.1.6/11.0.2 and below

Affected Platforms Microsoft Windows
OSX
Linux

Reliability Rating Complete (100%)

Configuration Requirements Default configuration

Attack Vector Client-Side File Format

Exploitation Impact Code Execution

Exploitation Context Sandbox

Patch ftp://ftp.adobe.com/pub/adobe/reader/

CVE CVE-2013-2729

Reference http://blog.binamuse.com/2013/05/readerbmprle.html

3 Common Vulnerability Scoring System

Base Metrics

Access Vector Local The vulnerability is exploitable with only lo-
cal access requires the attacker to have ei-
ther physical access to the vulnerable sys-
tem or a local (shell) account

Access
Complexity

Low Specialized access conditions or extenuating
circumstances do not exist

Authentication None Authentication is not required to exploit the
vulnerability.

Confidentiality
Impact

Complete There is total information disclosure, result-
ing in all system files being revealed

Integrity
Impact

Partial Modification of some system files or infor-
mation is possible, but the attacker does not
have control over what can be modified, or
the scope of what the attacker can affect is
limited

Availability
Impact

Partial (P) There is reduced performance or interrup-
tions in resource availability

Adobe Reader X BMP Heap corruption 2

4 VULNERABILITY DETAILS

Temporal Metrics

Exploitability Functional Functional exploit code is available. The
code works in most situations where the vul-
nerability exists

Remediation
Level

Unavailable There is either no solution available or it is
impossible to apply

Report
Confidence

Not Defined (ND) Assigning this value to the metric will not
influence the score. It is a signal to the
equation to skip this metric

Environmental Metrics

Collateral
Damage
Potential

Medium-High A successful exploit of this vulnerability may
result in significant loss of revenue or pro-
ductivity

Target
Distribution

High Between 76% - 100% of the total environ-
ment is considered at risk

4 Vulnerability Details

The issue presented here is related to the parsing of a BMP file compressed with RLE8. The bug is triggered
when Adobe Reader parses a BMP RLE encoded file embedded in an interactive PDF form. The dll responsible
of handling the embedded XFA interactive forms(and the BMP) is the AcroForm.api plugin. First we need to
reach the XFA code.

4.1 PDF Forms

A PDF file can contain interactive Forms in two flavors:

• The legacy, Forms Data Format (FDF or AcroForms)

• The XML based, XML Forms Architecture (XFA)

There is support for different XFA Specifications since Acrobat 8.0 (ref. http://blogs.adobe.com/

livecycle/2011/09/compatibility-matrix-for-xfa.html).

XFA Version Acrobat Version

2.6 Acrobat 8.1/Acrobat 8.11
2.7 Acrobat 8.1
2.8 Acrobat 9.0, Acrobat 9 ALang features
3.0 Acrobat 9.1
3.3 Acrobat 10.0

Table 1: XFA Support

We will focus on last XFA specification available.

4.2 XFA, The XML Forms Architecture

The XML Forms Architecture (XFA) provides a template-based grammar and a set of processing rules that allow
business to build interactive forms. At its simplest, a template-based grammar defines fields in which a user
provides data. Among others it defines buttons, textfields, choicelists, images and a scripting API to validate
the data and interact. It supports Javascript, XSLT an FormCalc as scripting language. A small XFA containing
an image looks like this:

Adobe Reader X BMP Heap corruption 3

4.2 XFA, The XML Forms Architecture 4 VULNERABILITY DETAILS

<template xmlns:xfa="http://www.xfa.org/schema/xfa-template/3.1/">

<subform name="form1" layout="tb" locale="en_US" restoreState="auto">

<pageSet>

<pageArea name="Page1" id="Page1">

<contentArea x="0.25in" y="0.25in" w="576pt" h="756pt"/>

<medium stock="default" short="612pt" long="792pt"/>

</pageArea>

</pageSet>

<subform w="576pt" h="756pt">

<field name="ImageField" >

<ui>

<imageEdit data="embed"/>

</ui>

<value>



</value>

</field>

</subform>

</subform>

</template>

An XFA Form can be embedded in a common pdf stream and be rendered by all modern versions of
Adobe Reader. The PDF catalog must contain the /NeedsRendering, /Extensions and /AcroForm fields.
/AcroForm field must point to the form dictionary. Something like this..

3 0 obj

<< /Length 12345 >>

stream

XFA....

endsream

2 0 obj

<< /XFA 3 0 R >>

endobj

1 0 obj

<< /Type /Catalog

/NeedsRendering true

/AcroForm 2 0 R

/Extensions << /ADBE << /BaseVersion /1.7

/ExtensionLevel 3

>>

>>

...

>>

Graphically a PDF containing an XFA form has this structure:

Adobe Reader X BMP Heap corruption 4

4.3 BMP - Run length encoding 4 VULNERABILITY DETAILS

So at this point we can build a PDF containing a XFA Form containing an image. Let’s see the BMP bug.

4.3 BMP - Run length encoding

The BMP can be compressed in two modes, absolute mode and RLE mode. Both modes can occur anywhere
in a single bitmap. Ref. http://www.fileformat.info/format/bmp/corion-rle8.htm

The RLE mode is a simple RLE mechanism, the first byte contains the count, the second byte the pixel to
be replicated. If the count byte is 0, the second byte is a special, like EOL or delta.

In absolute mode, the second byte contains the number of bytes to be copied literally. Each absolute run
must be word-aligned that means you might have to add an additional padding byte which is not included in
the count. After an absolute run, RLE compression continues.

Second byte Meaning

0 End of line
1 End of bitmap
2 Delta. The next two bytes are the horizontal

and vertical offsets from the current position
to the next pixel.

3-255 Switch to absolute mode

Table 2: RLE Modes of operation

4.4 Bug pseudocode

Consider listing 1. This pseudo code is derived from the function responsible of expanding an RLE encoded
BMP, found in AcroForm.api. The functions feof(), fread() and malloc() are the usual ones. The stream
is a file from where it has already read the complete BMP header, including the height and the width. The
main purpose of function is to expand the RLE encoded data. First it allocates enough memory to hold the
complete image. Then it reads one byte to decide between one of the two modes: RLE or Absolute. In the RLE
mode it repeats the next byte a number of times. In the Absolute mode there are more options implemented
as a switch:

0. End of line, fix the xpos/ypos indexes to point to the start of the next line.

1. End of file, finish processing.

2. Delta, moves the write pointer (e.g. to skip blank regions).

d. Literal data, copies data literally from the file

Try to find the bug here:

char* rle(FILE* stream , unsigned height , unsigned width){

assert(height < 4096 && height < 4096);

char * line;

char aux;

unsigned count;

struct {

unsigned char reps;

unsigned char value;

}cmd;

unsigned char xdelta , ydelta;

unsigned xpos = 0;

unsigned ypos = height - 1;

char * texture = malloc(height*width); //Safe mult!

assert(texture);

Adobe Reader X BMP Heap corruption 5

4.4 Bug pseudocode 4 VULNERABILITY DETAILS

while (!feof(stream)) {

fread (&cmd , 1, 2, stream);

if (cmd.reps) {

assert (ypos < height && cmd.reps + xpos <= width);

for(count = 0; count <cmd.reps; count ++) { //RLE Mode , repeat the

value

line = texture +(ypos*width);

line[xpos ++] = cmd.value;

}

}

else { // if rep is zero then value is a command

switch(cmd.value){

case 0: //End of line

ypos -= 1;

xpos = 0;

break;

case 1: //End of bitmap. Done!

return texture;

case 2: // Delta case , move bmp

pointer

read(&xdelta , 1, 1, stream); // read one byte

read(&ydelta , 1, 1, stream); // read one byte

xpos += xdelta;

ypos -= ydelta;

break;

default: // literal case

assert (ypos < height && cmd.value + xpos <= width);

for(count = 0; count < cmd.value; count ++){

fread (&aux , 1, 1, stream);

line = texture +(width*ypos);

line[xpos ++] = aux;

}

if (cmd.value & 1) // padding

fread (&aux , 1, 1, stream);

}// switch(cmd.value)

}//if (cmd.reps)

}//while (!feof(stream))

return texture;

}

Listing 1: The RLE bug

As you probably’ve found out, there are no asserts at the ”delta” case. So we could move the destination
pointers arbitrarily, even outside the limits of the texture buffer. However, there are boundary checks when you
try to actually write something to the texture buffer as in the line

assert (ypos < height && cmd.reps + xpos <= width);

Note that this leaves a corner case in which a heap overflow condition can be triggered. Suppose we repeatedly
pass delta commands advancing the xpos index. And we continue to do so without trying to write anything until
xpos gets really big, for example 0xffffff00. To accomplish this, the BMP should contain 0xffffff00/0xff
delta commands each one incrementing the xpos in 0xff like this:

bmp += ’\x00\x02\xff\x00’ * ((0 xffffffff -0xff) / 0xff)

Then after padding, we pass a literal command to actually write up to 0xff bytes of data directly from
the file to the pointed address. But as xpos+len(payload) overflows the 32bits integer representation, the

Adobe Reader X BMP Heap corruption 6

5 EXPLOITATION DETAIL

boundary assertion holds and the overflow is possible.

bmp += ’\x00\x02’+chr(0x100 -len(payload))+’\x00’

bmp += ’\x00’+chr(len(payload))+payload

Summing up, using this bug we can overwrite the with bytes immediately before the texture buffer.

5 Exploitation detail

The texture is allocated in the heap using the width and height found in the BMP header. So we control the
size of the overflow-able allocation and we need to choose it wisely to overwrite something useful.

But first to increase reliability it is better to prepare the heap with a sequence of allocations. We use the
well known javascript method for allocating and freeing heap chunks. The exploitation script would be like this:

• allocate 1000 0x12C chunks of controlled data. Very likely triggering a LFH of size 0x12C 0x12 (18)con-
secutive allocations will guarantee LFH enabled for a given SIZE.

• free one every 10 chunks of the previously allocated chunks, generating several holes separated 10 chunks
from each other

It has been found that a structure of size 0x12C bytes is used after the decoding of all images. It contains
pointers to the specific vtables and functions. The goal is to read and write this structure from javascript.

5.1 Read the struct

The first sub-goal is to be able to read the structure from javascript in order to learn the address of some dlls
and bypass ASLR. To get this we’ll load a broken BMP image corrupting an LFH chunk header thus trick the
allocator into believing that an alive javascript string memory is free.

• Load a broken BMP with dimensions {1 , 0x12C}, its pixel texture (of size 0x12C) will be allocated in
one of the prepared holes. The allocator will most likely assign one of the previously prepared holes to it.

• Using the bug in the RLE parsing, overwrite and corrupt the header of the image texture chunk.

• An exception in the RLE decoder will delete all the used structures. In particular, the image texture chunk
is freed. As its header is corrupted, this deletion will in fact delete the previous chunk and will leave the
texture chunk alone. This wrongly deleted chunk is still used by the javascript interpreter. One of the
string object leaving in the javascript interpreter still holds a pointer to the recently freed chunk.

If you can overflow into a chunk that will be freed, the SegmentOffset in the heap chunk
header can be used to point to another valid HEAP ENTRY. This could lead to controlling
data that was previously allocated. See https://www.lateralsecurity.com/downloads/

hawkes_ruxcon-nov-2008.pdf

Adobe Reader X BMP Heap corruption 7

5.2 Write the struct 5 EXPLOITATION DETAIL

At this point we have a javascript string using memory that is known to be free. An allocation of 0x12C
will probably be assigned to the same memory overlapping the javascript string. We aim for a javascript
string to share the same memory with an object containing vtables so we can learn the location of some
dll from the js interpreter. As we have chosen the chunk size carefully this happens automatically and an
interesting object gets allocated in the memory actually pointed by one of the javascript strings

• Now lets’ iterate over all javascript strings searching for the one that has changed

for (i=0; i < spray.size; i+=1)

if (spray.x[i] != null &&

spray.x[i][0] != "\u5858"){

...

}

• If found, parse its contents and discover the address of AcroRd32.dll

found = i;

acro = ((util.unpackAt(spray.x[i], 14) >> 16) - 0xa4) << 16;

break;

At this point we have pinpointed the exact string index that shares the memory with an imgstruct and leaked
the address of AcroRd.dll to the javascript interpreter.

5.2 Write the struct

In javascript, strings are simply not writable. You need to free the old string and make a new copy of the string
with the modifications you like. Usually, if the new string is the same size as the old one it will be allocated
in the same spot. So to change the object contents we need to free the selected javascript string and realloc
another in the same memory with different content.

• Free the selected javascript string (which shares memory with the object)

• Build a new 0x12C length string with the desired content using the leaked addresses, and spray it a bit
so it is eventually allocated over the desired object

• Allocate several new strings with the new content.

Adobe Reader X BMP Heap corruption 8

5.3 Controlling the flow 5 EXPLOITATION DETAIL

At this point the object is most likely replaced by a new one pointing to a ROP sequence.

5.3 Controlling the flow

Calling the doc.close() function from the js interpreter will trigger the unload of all loaded xfa images and the
use of the overwritten vtable Thus the replaced pointers in the object are used once more in the destructors
and the control flow is captured.

One last step involves to heap spray a pointer bed at a known address. A more specific technique(provided
upon request) in which other heap addresses are leaked to the interpreter doesn’t need this step.

Adobe Reader X BMP Heap corruption 9

